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Abstract

A unified approach to predict near and far-field acoustic pressures
based on Lighthill’s acoustic analogy is presented. Numerical
techniques are implemented to remove the singularities that
occur when the integral form of Lighthill’s acoustic analogy is
applied in the near-field. As the distance between the source
and field point increases, the approach presented here behaves
as a standard far-field implementation of Lighthill’s analogy.
The accuracy of the method is demonstrated by computing the
near-field acoustic pressures arising from an analytical acoustic
source distribution and comparing the results with those obtained
using an alternate formulation from the literature.

Introduction

Lighthill reformulated the Navier-Stokes equation into a wave
equation that represents the acoustic source generation by fluid
motion and the propagation of these acoustic sources [5, 6].
He derived an acoustic analogy which demonstrates that sound
generated by a turbulent fluid flow is equivalent to the sound
generated by a distribution of acoustic quadrupoles computed
from the instantaneous velocity fluctuations.

A range of hybrid methods which use computational fluid dy-
namics (CFD) to calculate acoustic source terms from transient
flow variables and Lighthill’s acoustic analogy to predict the
acoustic propagation have been developed [1, 7]. These hybrid
methods typically make use of the Green’s function solution of
the wave equation to reformulate the acoustic propagation prob-
lem into an integral equation. Direct application of this approach
to Lighthill’s analogy results in an integral equation where the
acoustic waves generated by the source distribution propagate to
the far-field as monopoles. Any numerical errors present in the
source field can thereby swamp the far-field response. In many
hybrid methods, this monopolar integral equation is converted
to a quadrupolar integral equation by applying the divergence
theorem. The acoustic waves generated by this quadrupolar in-
tegral equation then propagate to the far-field as quadrupoles.
This approach has been shown to produce accurate results and
does not suffer from the error amplification experienced with the
monopolar integral equation [1, 7].

Recently some attention has been given to using a quadrupole
form of the integral equation to predict the acoustic pressure
inside the source region [4, 10]. In the vicinity of the field
point, the integrand is not continuous due to the singularity of
the Green’s function and its derivatives. Hence a small vol-
ume around the field point must be excluded from the domain
before the divergence theorem can be applied. Singular and
‘near-singular’ volume integrals arise from this approach, as well
as some extra terms due to the small exclusion volume. Whilst
Watigrant [10] takes these extra terms into account, no treatment
of the singular volume integrals is provided. Khalighi [4] also
includes the extra terms due to the exclusion volume. The singu-
lar volume integrals are converted to singular surface integrals

using the divergence theorem and then solved using a singularity
subtraction technique. Neither approach applies any specific
treatment for the near-singular integrals.

In this paper, near-field formulations for both the monopole
and quadrupole form of Lighthill’s analogy are presented. The
monopole formulation is developed for use as a reference solu-
tion. The quadrupole formulation is similar to those presented by
Watrigant [10] and Khalighi [4]. In the present work, the singular
volume integrals are regularised using the singularity subtrac-
tion technique of Guiggiani et al. [2, 3] and the near-singular
volume integrals are treated using the self-adaptive polynomial
transformation technique of Telles [8, 9]. Both the monopole
and quadrupole formulations are applied to predict the near-field
acoustic pressure generated by a distribution of Lighthill’s tensor
that has an analytical spatial variation. The results from both
formulations are compared.

Numerical Methods

Monpole Formulation of Lighthill’s Analogy

An integral equation for calculating the acoustic pressure, pa, at
a field point, x, based on Lighthill’s analogy can be expressed as
[5, 7]

p̂a (x,ω) =
∫

Ω

∂2T̂i j (y,ω)
∂yi∂y j

Ĝk (x,y)dy (1)

where a harmonic time dependence of e−iωt has been assumed.
ui and u j are the ith and jth components of the velocity vector,
respectively. Ĝk (x,y) = eikr

4πr is the harmonic free-field Green’s
function, k is the acoustic wavenumber, y is the source point
and r = |x−y|. pa is the acoustic pressure and Ti j is the Lighthill
tensor. For low Mach number flows, Ti j can be expressed as [5]

Ti j ≈ ρ0uiu j (2)

where ρ0 is the incompressible density. In equation (1), T̂i j and
p̂a represent the Fourier transforms of Ti j and pa, respectively.

For the present work, it is assumed that a region of space, Ω,
with boundary, Γ, contains a spatially varying distribution of
Lighthill’s tensor. Outside this boundary, Γ, Lighthill’s tensor
is zero. In the current work, the boundary is not hard walled
and acoustic waves pass unhindered through the boundary. Fur-
thermore, it is assumed that no field point lies on or near the
boundary and hence evaluation of singular and ‘near-singular’
surface integrals is not considered. Hence this work focuses on
singular and near-singular volume integrals only.

The formulation given by equation (1) is only valid when the
field point is outside the acoustic source region. When the field
point is inside the acoustic source region, the integral contains
a singularity and cannot be solved directly. To overcome this,
a small spherical volume, Vε, of radius ε and bounded by the
surface ∂Vε, is taken around the field point and equation (1) is



rewritten as

p̂a (x,ω) = lim
ε→0

∫
(Ω−Vε)

∂2T̂i j (y,ω)
∂yi∂y j

Ĝk (x,y)dy

+ lim
ε→0

∫
Vε

∂2T̂i j (y,ω)
∂yi∂y j

Ĝk (x,y)dy (3)

Watrigant [10] demonstrated that the second term on the right
hand side of equation (3) is zero and hence equation (3) reduces
to

p̂a (x,ω) = lim
ε→0

∫
(ΩS−Vε)

∂2T̂i j (y,ω)
∂yi∂y j

Ĝk (x,y)dy (4)

Equation (4) will be referred to as the ‘monopole formulation’
of Lighthill’s analogy, as the acoustic sources given by ∂2T̂i j

∂yi∂y j
pro-

duce acoustic waves which propagate away from the source point,
y, as monopoles. However, errors in the acoustic source distribu-
tion also radiate to the far-field as monopoles. Any such errors
can produce inaccurate acoustic pressure predictions. Hence,
the monopole formulation is not suitable for use in the far-field.
The monopole formulation is used here to validate the near-field
pressures predicted with the quadrupole formulation.

Quadrupole Formulation of Lighthill’s Analogy

An alternate formulation to equation (1) commonly used for
far-field noise predictions based on Lighthill’s analogy is given
by [7]

p̂a (x,ω) =
∫

Ω

T̂i j (y,ω)
∂2Ĝk (x,y)

∂yi∂y j
dy (5)

This formulation relies on applying the divergence theorem to
equation (1) to move the spatial derivates from Lighthill’s stress
tensor to the Green’s function. However, when the field point is
inside the source region, the divergence theorem must be applied
to equation (3) instead, producing

p̂a (x,ω) = lim
ε→0

∫
(Ω−Vε)

T̂i j (y,ω)
∂2Ĝk (x,y)

∂yi∂y j
dy

+ lim
ε→0

∫
Vε

∂2T̂i j (y,ω)
∂yi∂y j

Ĝk (x,y)dy

+ lim
ε→0

∫
∂Vε

[
Ĝk (x,y)

∂T̂i j (y,ω)
∂yi

·n j− T̂i j
∂Ĝk (x,y)

∂y j
·ni

]
dy

+
∫

Γ

[
Ĝk (x,y)

∂T̂i j (y,ω)
∂yi

·n j− T̂i j
∂Ĝk (x,y)

∂y j
·ni

]
dy (6)

where ni is the ith component of the normal vector pointing out
of the fluid on ∂Vε and Γ. Using results from Watrigant [10],
equation (6) can be expressed as

p̂a (x,ω) = lim
ε→0

∫
(Ω−Vε)

T̂i j (y,ω)
∂2Ĝk (x,y)

∂yi∂y j
dy− ∑

d
i=1 Tii (x,ω)

d

+
∫

Γ

[
Ĝk (x,y)

∂T̂i j (y,ω)
∂yi

·n j− T̂i j
∂Ĝk (x,y)

∂y j
·ni

]
dy (7)

where d is the dimension of the problem. Equation (7) here is
referred to as the ‘quadrupole formulation’ of Lighthill’s analogy.

Finite Element Discretisation

The source region is initially discretised into finite elements and
partitioned into two regions: Ωs, representing the finite elements
that intersect with the vanishing neighbourhood, and Ω0, repre-
senting the finite elements that do not intersect with the vanishing
neighbourhood. Also, the boundary of the source region, Γ, is
discretised into finite elements, Γ0. Hexahedral elements are
used for the source region and quadrilateral elements are used
for the boundary. All elements are mapped onto a reference
element in intrinsic coordinates. For the volume elements, the

intrinsic coordinates are denoted by ξξξ = (ξ,η,ζ) and for the sur-
face elements they are ψψψ = (ψ,κ). In the present work, a trilinear
mapping is used for the volume elements and a bilinear mapping
for the surface elements, which allows the value of any variable
within the element to be calculated as follows

αv (ξξξ) = ∑
m

Mm
v (ξξξ)α

m
v , αs (ψψψ) = ∑

m
Mm

s (ψψψ)α
m
s (8)

where αv represents any variable in the volume and αs represents
any variable on the surface. m represents the nodes used to define
the geometry. Mm

v (ξξξ) and Mm
s (ψψψ) are the shape functions of the

geometry for the volume and surface elements, respectively. ym

are the Cartesian coordinates of the mth node.

During the mapping process, each element in ΩS is mapped
onto a reference cube, ΩSR, in intrinsic coordinates. Similarly,
the exclusion neighbourhood is mapped from a region, Vε, in
Cartesian coordinates to a region, σε, in intrinsic coordinates.
Also, elements in region Ω0 map onto a region Ω0R, in intrinsic
coordinates.

In intrinsic coordindates, equation (4) can be expressed as

p̂a (x,ω) = lim
ε→0

∫
(ΩSR−σε)

∂2T̂i j

∂yi∂y j
(y(ξξξ) ,ω) Ĝ(x,y(ξξξ))J (ξξξ)dξdηdζ

+
∫

Ω0R

∂2T̂i j

∂yi∂y j
(y(ξξξ) ,ω) Ĝ(x,y(ξξξ))J (ξξξ)dξdηdζ (9)

and equation (7) can be expressed as

p̂a (x,ω) = lim
ε→0

∫
(ΩSR−σε)

T̂i j (y(ξξξ) ,ω)
∂2Ĝk (x,y(ξξξ))

∂yi∂y j
J (ξξξ)dξdηdζ

+
∫

Ω0R

T̂i j (y(ξξξ) ,ω)
∂2Ĝk (x,y(ξξξ))

∂yi∂y j
J (ξξξ)dξdηdζ

−∑
d
i=1 Tii (x,ω)

d
+

∫
Γ0

[
Ĝk (x,y(ξξξ))

∂T̂i j (y(ξξξ),ω)
∂yi

·n j

− T̂i j
∂Ĝk (x,y(ξξξ))

∂y j
·ni

]
J (ψψψ)dψdκ (10)

where J (ξξξ) and J (ψψψ) are the Jacobian of the transformations
from Cartesian to intrinsic coordinates for volume element and
surface elements, respectively.

Regularisation of Singular Integrals

The first terms on the right hand side of equations (9) and (10) are
singular and cannot be evaluated by standard numerical integra-
tion. To remove these singularities, a coordinate transformation
to spherical coordinates, ρρρ = (ρ,θ,φ), is employed. These spheri-
cal coordinates are centred at ξξξ0 = (ξ0,η0,ζ0), the image of x in
intrinsic coordinates, and are given by

ξ = ξ0 +ρcosθsinφ , η = η0 +ρsinθsinφ , ζ = ζ0 +ρcosφ (11)

where ρ is the radius, θ is the azimuth angle and φ is the zenith
angle. The Jacobian of the transformation from intrinsic to
spherical coordinates results in the following relationship

dξdηdζ = ρ
2 sinφdρdθdφ (12)

This spherical coordinate transformation is sufficient to regu-
larise the singularity in equation (9) and the monopole formu-
lation can then be solved using standard quadrature techniques.
Transformation to spherical coordinates weakens the singularity
of equation (10) to O

(
ρ−1). To regularise the remaining singu-

larity, the singularity subtraction technique of Guiggiani et al.
[2, 3] is used. After application of Guiggiani’s regularisation
technique [2, 3], the singular integrals of equation (10) can be
calculated accurately using Gaussian quadrature.



Treatment of Near-Singular Integrals

Near-singular integrals are regular integrals and can hence be
solved numerically using standard quadrature schemes. How-
ever, when the field point is located close to an element, the
number of integration points required to achieve an accurate
solution becomes large. Coordinate transformation techniques
cluster the integration points towards the singularity. Using a
self-adaptive polynomial transformation technique [8, 9], this
integration point clustering is related to the distance between
field point and element. Hence, as the distance increases, the
distribution of integration points within the element reverts to
normal. This allows the technique to be easily applied to all
near-singular integrals within the model.

Results and Discussions

Analytical Source

The source region used in the current study is a 1m cube that
is centred at the origin. Analytical velocity distributions are
assigned inside the cube as follows

ûi =
Ai

2ω
eikiyi (13)

where Ai is a constant, ω = kc is the radian frequency with c the
speed of sound. ki is the wavenumber of the ith component of
velocity. This produces the following distribution of Lighthill’s
tensor within the cube

T̂i j =
AiA j

4ω2 ei(kiyi+k jy j) (14)

The single and double spatial derivatives of Lighthill’s tensor are

∂T̂i j

∂yi
=

ikiAiA j

4ω2 ei(kiyi+k jy j)

∂2T̂i j

∂yi∂y j
=−

kik jAiA j

4ω2 ei(kiyi+k jy j) (15)

It is relatively straightforward to determine the nodal values of
Lighthill’s tensor and its single and double spatial derivatives.
This makes the analytical source distribution an ideal choice
for comparing the monopole and quadrupole formulations. A
similar approach was used by Watrigant [10].

Three analysis cases were studied. Table 1 summarises the
parameters used for the comparative studies. The speed of sound
for all studies was c = 1500m/s and the frequency, f = ω

2π
. For

each analysis case three different element sizes were studied. The
number of nodes in each coordinate direction was 70, 140 and
280, resulting in element edge lengths of ∆l =1.45E−02, 7.19E−03
and 3.58E−03, respectively.

Table 1: Parameters for the comparative analyses

Parameter Units Case 1 Case 2 Case 3
k m-1 2π 0.2π 0.02π

f Hz 1.5E+03 1.5E+02 1.5E+01
A1 - 2.0E+03 2.0E+03 2.0E+03
k1 m-1 2π 2π 2π

A2 - 5.0E+02 5.0E+02 5.0E+02
k2 m-1 4π 4π 4π

A3 - 1.0E+03 1.0E+03 1.0E+03
k3 m-1 8π 8π 8π

Figure 1 shows the magnitude and phase of the double spatial
derivative of Lighthills tensor, ∂2T̂i j

∂yi∂y j
, inside the source region for

the parameters given in Table 1.

(a) Magnitude (b) Phase

Figure 1: Spatial distribution of the double spatial derivative of
Lighthill’s tensor

Near-Field Acoustic Pressures

To assess the accuracy of the quadrupole formulation, the acous-
tic pressure was recovered within the source region at field points
ranging from (−0.4,0,0) to (0.4,0,0) in (0.008,0,0) increments.
Figure 2 shows the real and imaginary components of the acous-
tic pressure for the three cases studied. For clarity, only the
pressures obtained using the monopole formulation with the
finest grid resolution are presented. Figure 2 shows that the
near-field acoustic pressures for the k = 0.2π and k = 0.02π cases
have similar profiles and this is likely due to the compactness of
the acoustic source region at these wavenumbers.

To estimate the accuracy of the quadrupole formulations, the
following two error metrics were defined:

E (x) =

∣∣paq (x)− pam (x)
∣∣

|pam (x)|
, Eav =

∥∥paq (x)− pam (x)
∥∥

2
‖pam (x)‖2

(16)

where ‖·‖2 represents the L2-norm, E (x) is the relative error at
the field point, x, and Eav is the average relative error. paq (x)
refers to the acoustic pressure predicted using the quadrupole
formulation and pam (x) is the acoustic pressure predicted using
the monopole formulation. Figure 3 shows the local relative error
at each wavenumber for the three grid resolutions considered. In
all plots the local relative error has small oscillations caused by
variations in the field point position relative to nearby element
boundaries.

Table 2 provides a summary of Eav for the quadrupole formu-
lation relative to the monopole formulation. The quadrupole
formulation predicts the near-field acoustic pressure with good
accuracy over a wide range of wavenumbers and grid spacing.

Table 2: Summary of average error of quadrupole formulation

∆l k = 2π k = 0.2π k = 0.02π

1.45E-02 2.9E-03 7.2E-03 7.2E-03
7.19E-03 7.2E-04 1.8E-03 1.8E-03
3.58E-03 1.8E-04 4.5E-04 4.5E-04

Conclusions

A near-field quadrupole formulation of Lighthill’s analogy has
been presented and the results compared with a monopole for-
mulation. The quadrupole formulation relies on a singularity
subtraction technique to solve the singular volume integrals and
on a self-adaptive polynomial transformation to solve the near-
singular integrals. The quadrupole formulation was applied to
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Figure 2: Real (solid) and imaginary (dashed) acoustic pressures
for wavenumbers (a) k = 2π, (b) k = 0.2π and (c) k = 0.02π
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Figure 3: Local error of quadrupole formulation for ∆l = 1.45E-02
(dashed), 7.19E-03 (dotted) and 3.58E-03 (solid) for wavenumbers
(a) k = 2π, (b) k = 0.2π and (c) k = 0.02π

predict the near-field pressures generated by an acoustic source
distribution described by an analytical spatial variation. The
quadrupole formulation predicts the near-field acoustic pressure
with good accuracy over a wide range of wavenumbers. The av-
erage error, relative to the results from the monopole formulation,
did not exceed 0.8% for all of the cases considered.
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